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Abstract: Detecting pedestrians accurately is the first fundamental step for many computer vision applications
such as video surveillance, smart vehicles, intersection traffic analysis and so on. The authors present an
experimental study on pedestrian detection using state-of-the-art local feature extraction and support vector
machine (SVM) classifiers. The performance of pedestrian detection using region covariance, histogram of
oriented gradients (HOG) and local receptive fields (LRF) feature descriptors is experimentally evaluated. The
experiments are performed on the DaimlerChrysler benchmarking data set, the MIT CBCL data set and ’Intitut
National de Recherche en Informatique et Automatique (INRIA) data set. All can be publicly accessed. The
experimental results show that region covariance features with radial basis function kernel SVM and HOG
features with quadratic kernel SVM outperform the combination of LRF features with quadratic kernel SVM.
Furthermore, the results reveal that both covariance and HOG features perform very well in the context of
pedestrian detection.
1 Introduction
Detecting pedestrians has attracted a lot of research interests
in recent years, because of its key role in several important
applications in computer vision, for example, smart
vehicles, surveillance systems with intelligent query
capabilities, intersection traffic analysis. In particular, there
has been a growing effort in the development of intelligent
video surveillance systems. Public places like airports, train
stations and parking areas have a large number of security
cameras recording at all times. Because of the vast amount
of video data being processed, it is very difficult to detect
and respond to an abnormal event in real-time. An
example of such abnormal events is unusual human activity
in a scene. An automated method for finding humans in a
scene serves as the first important preprocessing step in
understanding human activity. Human detection, however,
is considered among the hardest examples of object
detection problems. The challenges include a wide range of
poses that humans adopt, large variations in clothing, as
well as cluttered backgrounds and environmental conditions.
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All these issues have made this problem very challenging
from a machine vision perspective.

Pattern classification approaches have been shown to
achieve successful results in many areas of object detections.
These approaches can be decomposed into two key
components: feature extraction and classifier construction.
In feature extraction, dominant features are extracted from
a large number of training samples. These features are then
used to train a classifier. During testing, the trained
classifier scanned the entire input image to look for
particular object patterns. This general approach has shown
to work very well in the detection of many different
objects, for example, face [1] and car number plate [2], etc.

The performance of several pedestrian detection
approaches has been evaluated in [3]. Multiple feature-
classifier combinations have been examined with respect to
their receiver-operating characteristic (ROC) performance
and efficiency. Different features including principal
component analysis (PCA) coefficients, local receptive
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fields (LRF) feature [4] and Haar wavelets [5] are used to
train neural networks, support vector machines (SVM) [6,
7] and k-NN classifiers. The authors conclude that a
combination of SVM with LRF features performs best.
Their results show that local feature-based detectors
significantly outperform those using global features [3].
This is because of the large variability of pedestrian shapes.
Global features like PCA are more powerful modelling
objects with stable structures such as frontal faces, rigid car
images taken from a fixed view angle.

Although [3] provides some insights on pedestrian detection,
it has not compared the state-of-the-art techniques because of
the fast progress in this topic. Recently, histogram of oriented
gradients (HOG) [8] and region covariance features [9] are
preferred for pedestrian detection. It has been shown that
they outperform those previous approaches. HOG is a gray-
level image feature formed by a set of normalised gradient
histograms; while region covariance is an appearance-based
feature, which combines pixel coordinates, intensity,
gradients, etc., into a covariance matrix. Hence, the type of
features employed for detection ranges from purely silhouette-
based (e.g. HOG) to appearance based (e.g. region covariance
feature) features. To our knowledge, these approaches have
not yet been compared. It remains unclear whether silhouette
or appearance-based features are better for pedestrian
detection. This paper tries to answer this question. The main
purpose of the paper therefore is a systematic comparison of
some novel techniques for pedestrian detection.

In this paper, we perform an experimental study on the state-
of-the-art pedestrian detection techniques: LRF, HOG and
region covariance along with various combinations of SVM.
The reasons we select these three features along with SVM
classifiers are mainly:

† These three local features seem to be the best candidates
for this task.

† SVM is one of the advanced classifiers. It is easy to train
and, unlike neural networks, the global optimum is
guaranteed. Thus the variance caused by suboptimal
training is avoided for fair comparison.

The paper is organised as follows. Section 2 reviews various
existing techniques for pedestrian detection. Sections 3 and 4
describe methods used for feature extraction and a brief
introduction to two of the well-known classifiers. The
experimental setup and experimental results are presented
in Section 5. The paper concludes in Section 6.

2 Related work
Many pedestrian classification approaches have been proposed
in the literature. These algorithms can be roughly classified
into two main categories: (1) approaches which require
preprocessing techniques like background subtraction or
image segmentation (e.g. [10] segments an image into
Comput. Vis., 2008, Vol. 2, No. 4, pp. 236–246
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so-called super pixels and then detects the human body and
estimates its pose) and (2) approaches which detects
pedestrian directly without using pre-processing techniques
[4, 5, 8, 9].

Background subtraction and image-segmentation techniques
can be applied to segment foreground objects from the
background. The foreground objects can then be classified
into different categories like human, vehicle and animal,
based on their shape, colour, texture, etc. Some of the main
drawbacks of these techniques are that they usually assume
that the camera is static, background is fixed and the
differences are caused only by foreground objects. In
addition, the performance of the system is often affected by
outdoor light changes.

The second approach is to detect humans based on features
extracted from the image. Features can be distinguished into
global features, local features and key-points depending on
how the features are measured. The difference between
global and local features is that global features operate on the
entire image of data sets, whereas local features operate on
the subset regions of the images. One of the well-known
global feature extraction method is PCA. The drawback of
global features is that the approach fails to extract meaningful
features if there is a large variation in object’s appearance,
pose and illumination conditions. On the other hand, local
features are much less-sensitive to these problems since the
features are extracted from the subset regions of the image.
Some examples of the commonly used local features are
wavelet coefficient [1], gradient orientation [8], region
covariance [9], etc. Local feature approaches can be further
divided into whole body detection and body parts detection
[11, 12]. In part-based approach, individual results are
combined by a second classifier to form whole body
detection. The advantage of using part-based approach is
that it can deal with variation in human appearance owing to
body articulation. However, this approach adds more
complexity to the pedestrian detection problem. As pointed
out in [3], the classification performance reported in different
literature is quite different. This is because of data sets’
composition with respect to negative samples. Data sets with
negative samples containing large uniform image regions
typically lead to much better classification performance.

3 Feature extraction
Feature extraction is the first fundamental step in most
object detection and pattern recognition algorithms. The
performance of most computer vision algorithms often relies
on the extracted features. The ideal feature would be the one
that can differentiate objects in the same category from
objects in different categories. Commonly used low-level
features in computer vision are colour, texture and shape. In
this paper, we evaluate three local features, namely LRF,
HOG and region covariance. LRF features are extracted
using multilayer perceptrons by means of their hidden layer.
The features are tuned to the data during training. HOG
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uses histogram to describe oriented gradient information.
Region covariance computes covariance from several low-
level image features such as image intensities and gradients.

3.1 Local receptive fields

The features are generated from a parallel hierarchical artificial
neural network similar to the one shown in Fig. 1. Neural
network is a mathematical model based on biological neural
networks. It is an adaptive system that changes its structure
based on the information that flows through the network
during training process. One of the well-known feedforward
neural network system is multilayer perceptron. Multilayer
perceptrons consist of three or more layers of neurons with
nonlinear activation function. The three layers consist of
input layer (input images), hidden layer and output layer.
Each layer extracts informative features from the output of
the preceding stage to form a more compact representation
of the extracted features. A neuron of a higher layer does
not receive input from all neurons of the underlying layer
but only from a limited region of it, which is call local
receptive fields (LRF). The hidden layer is divided into a
number of branches with all neurons within one branch
sharing the same set of weights. Each branch captures the
spatial information by encoding local image features.

In [3], the authors further investigate the concept of LRF.
In their experiments, they have shown that receptive fields of
size 5 � 5 pixels, shifted at a step size of two pixels over the
input image of size 18 � 36 are optimal. In order to further
improve the performance of LRF, the authors combine SVM
with the output of the hidden layer of a neural network/LRF.
In other words, multilayer perceptrons extract compact and
meaningful features from input images. The extracted
features can then be used to train SVM classifiers.

3.2 Histograms of oriented gradients

Since the advent of scale invariant feature transformation
(SIFT) [13], which uses normalised local spatial histograms
as a descriptor, many research groups have been studying the
use of orientation histograms in other areas. Dalal and

Figure 1 Multilayer perceptrons with local receptive fields
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Triggs [8] show one of the successful examples. [8] propose
histogram of oriented gradients in the context of human
detection. Their method uses a dense grid of histogram of
oriented gradients, computed over blocks of various sizes.
Each block consists of a number of cells. These blocks can
overlap with each other. For each pixel, I (x, y), the gradient
magnitude, m(x, y) and orientation, u(x, y) is computed from

dx ¼ I (xþ 1, y)� I (x� 1, y) (1)

dy ¼ I (x, y þ 1)� I (x, y � 1) (2)

m(x, y) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx2 þ dy2

q
(3)

u(x, y) ¼ tan�1 dy

dx

� �
(4)

A local one-dimensional orientation histogram of gradients is
formed from the gradient orientations of sample points
within a region. Each histogram divides the gradient angle
range into a predefined number of bins. The gradient
magnitudes vote into the orientation histogram. In [8],
each detection window is divided into cells of size 8 � 8
pixels and a group of 2 � 2 cells is integrated into a block.
Block can overlap with each other. The orientation
histogram of each cell contains nine bins covering an
orientation range of 08–1808 (unsigned gradients–a
gradient vector and its negative vote into the same bin).
Each block contains a concatenated vector of all its cells. In
other words, each block is represented by a 36-D feature
vector (9 bins/cell � 4 cells/block) (Fig. 2).

Each of the HOG descriptor blocks is then normalised
based on the energy of the histogram contained within it.
Normalisation introduces better invariance to illumination,
shadowing and edge contrast. In order to reduce the effect
of nonlinear illumination changes owing to camera
saturation or environmental illumination changes that affect
three-dimensional(3D) surfaces, ‘2-norm is applied
followed by clipping (limiting the maximum values of the
gradient magnitudes to 0.2) and renormalising. The value
of 0.2 is determined experimentally using images containing

Figure 2 HOG features

Each block consists of a grid of spatial cells. For each cell, the
weighted vote of image gradients in orientation histograms is
computed
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different illuminations for the same 3D objects [13]. The
final step is to combine these normalised block descriptors
to form a feature vector. The feature vector can then be
used to train SVM classifiers.

3.3 Region covariance

Tuzel et al. [9, 14] have proposed region covariance in the
context of object detection. Instead of using joint histograms
of the image statistics (bd dimensions where d is the number
of image statistics and b the number of histogram bins used
for each image statistics), covariance is computed from several
image statistics inside a region of interest (dimensions). This
results in a much smaller dimensionality. Similar to HOG,
the image is divided into small overlapped regions. For each
region, the correlation coefficient is calculated. The correlation
coefficient of two random variables X and Y is given by

rX ,Y ¼
cov(X , Y )

var(X )var(Y )
¼

cov(X , Y )

s2
xs

2
y

(5)

cov(X , Y ) ¼ E (X � mX )(Y � mY )
� �

¼
1

n� 1

X
k

(Xk � mX )(Yk � mY )
(6)

where cov(., .) is the covariance of two random variables, m the
sample mean and s2 the sample variance. Correlation
coefficient is commonly used to describe the information we
gain about one random variable by observing another
random variable.

A positive correlation coefficient, rX ,Y . 0, suggests that
when X is high relative to its expected value, Y also tends
to be high and vice versa. A negative correlation coefficient,
uX ,Y , 0, suggests that a high value of X is likely to be
accompanied by a low value of Y and vice versa. A linear
relationship between X and Y produces the extreme values,
uX ,Y ¼ {þ1, �1}. In other words, correlation coefficient is
bounded by 21 and 1.

Image statistics used in this experiment are similar to the
one used in [9]. The eight-dimensional feature image used
are pixel location x, pixel location y, first-order partial
derivative of the intensity in horizontal direction jI xj,
first-order partial derivative of the intensity in vertical

direction jI yj, the magnitude
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I 2

x þ I 2
y

q
, edge orientation

tan�1(jI yj=jI xj), second-order partial derivative of the
intensity in horizontal direction jI xxj, second-order partial
derivative of the intensity in vertical direction jI yyj.
The covariance descriptor of a region is an 8 � 8 matrix.
Because of the symmetry, only the upper triangular part
is stacked as a vector and used as covariance descriptors.
The descriptors encode information of the correlations
of the defined features inside the region. Note that
this treatment is different from [9, 14], where the
covariance matrix is directly used as the feature and the
distance between features is calculated in the Riemannian
Comput. Vis., 2008, Vol. 2, No. 4, pp. 236–246
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manifold covariance matrices are symmetric and positive
semi-definite, hence they reside in the Riemannian
manifold. However, eigen-decomposition is involved in
calculating the distance in the Riemannian manifold. We
instead vectorise the symmetric matrix and measure the
distance in the Euclidean space, which is faster.

In order to improve the covariance matrices’ calculation
time, technique which employs integral image [1] can be
applied [14]. By expanding the mean from the previous
equation, covariance equation can be written as

cov(X , Y ) ¼
1

n� 1

X
k

XkYk �
1

n

X
k

Xk

X
k

Yk

" #
(7)

Hence, to find the fast covariance in a given rectangular
region, the sum of each feature dimension, for example,P

k Xk,
P

k Yk and the sum of the multiplication of any
two feature dimensions, for example,

P
k XkYk can be

computed using integral image.

The final step is to concatenate these covariance
descriptors from all regions into a combined feature vector,
which can then be used to train SVM classifiers.

4 Classifiers
There exist several classification techniques that can be applied
to object detection problem. Some of the commonly applied
classification techniques are SVM [6, 7] and AdaBoost
[1, 15]. owing to space constraints, we limit our explanation
of SVM and AdaBoost classifiers algorithm to an overview.

4.1 Support vector machines

Large margin classifiers have demonstrated their advantages
in many vision tasks. SVM is one of the popular large
margin classifiers [6, 7] which has a very promising
generalisation capability. Linear SVM is best understood
and simplest to apply. However, linear separability is a
rather strict condition. Kernels are combined into margins
for relaxing this restriction. SVM is extended to deal with
linearly non-separable problems by mapping the training
data from the input space into a high-dimensional, possibly
infinite-dimensional, feature space. Using the kernel trick,
the mapping function is not necessarily known explicitly.
Like other kernel methods, SVM constructs a symmetric
and positive definite kernel matrix (Gram matrix) which
represents the similarities between all training datum
points. Given N training data {(xi , yi)}

N
i¼1, the kernel matrix

is written: K ij ; K (xi, xj) ¼ kF(xi), F(xj)l, i, j ¼ 1, . . . ,
N . When K ij is large, the labels of xi and xj , yi and yj ,
are expected to be the same. Here, yi , yj [ {þ1, �1}. The
decision rule is given by sign( f (x)) with

f (x) ¼
XNS

i¼1

b̂iK ( x̂i , x)þ b (8)
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where x̂i, i ¼ 1, . . . , NS, are support vectors, NS is the number
of support vectors, b̂i the weight associated with x̂i and b is the
bias. The training process of SVM then determines the
parameters {x̂i , b̂i , b, NS} by solving the optimisation problem

minimise
j,w,b

1

2
kwkr

r þ C
XN

i¼1

ji

subject to yi(w`F(xi)þ b) � 1� ji, 8i

ji � 0, 8i

(9)

where j ¼ {ji}
N
i¼1 is the slack variable set and the regularisation

parameter C determines the trade-off between SVM’s
generalisation capability and training error. r ¼ 1, 2
corresponds to 1-norm and 2-norm SVM, respectively. The
solution takes the form w ¼

PN
i¼1 yiaiF(xi). Here, ai � 0

and most of them are 0, yielding sparseness. The
optimisation (9) can be efficiently solved by linear or
quadratic programming in its dual. Refer to [7] for details.

In this experimental work, SVM classifiers with three
different kernel functions, linear, quadratic and RBF
kernels, are compared with the features calculated from
previous section.

4.2 AdaBoost

AdaBoost (Adaptive Boosting) is the first practical and
efficient algorithm for ensemble learning [15]. The training
procedure of AdaBoost is a greedy algorithm, which
constructs an additive combination of weak classifiers such
that the exponential loss is minimised:

L(y, f (x)) ¼ e�yf (x) (10)

Here x is the labelled training example and y is its label; f (x)
is the final decision function which outputs the decided class
label. AdaBoost combines iteratively a number of weak
classifiers to form a strong classifier. Weak classifier is
defined as a classifier with accuracy on the training set
greater than average. The final strong classifier H(.) can be
defined as

H (x) ¼ sign
XNS

i¼1

aihi(x)

 !
(11)

where ai a weight coefficient; hi(�) a weak learner and NS the
number of weak classifiers. At each new round, AdaBoost
selects a new hypothesis h(�) that best classifies training
samples with minimal classification error. Each training
sample receives a weight that determines its probability of
being selected for a training set. If a training sample is
correctly classified, then its probability of being used again
in a subsequent component classifier is reduced.
Conversely, if the pattern is misclassified, then its
probability of being used again is increased. In this way,
he Institution of Engineering and Technology 2008
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the algorithm focuses more on the misclassified samples
after each round of boosting.

5 Experiments
The experimental section is organised as follows. First, the
data sets used in this experiment, including how the
performance is analysed, are described. Preliminary
experiments and the parameters used to achieve optimal
results are then discussed. Finally, experimental results and
analysis of different techniques are compared. In all the
experiments, associated parameters are optimised via cross-
validation.

5.1 Experiments on DaimlerChrysler
data set

This data set consists of three training sets and two test sets.
Each training set contains 4800 pedestrian examples and
5000 non-pedestrian examples (Table 1). The pedestrian
examples were obtained from manual labelling and
extracting pedestrians in video images at various time and
locations with no particular constraints on pedestrian pose
or clothing, except that pedestrians are standing in an
upright position. Pedestrian images are mirrored and the
pedestrian bounding boxes are shifted randomly by a few
pixels in horizontal and vertical directions. A border of two
pixels is added to the sample in order to preserve contour
information. All samples are scaled to size 18 � 36 pixels.

Table 1 Benchmark data set of [3]

No. Data
splits

Pedestrians/
split

Non-pedestrians/
split

Train 3 4800 5000

Test 2 4800 5000

Figure 3 Pedestrian and non-pedestrian samples from the
benchmark data set
IET Comput. Vis., 2008, Vol. 2, No. 4, pp. 236–246
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Some examples of pedestrian and non-pedestrian samples are
shown in Fig. 3. Performance on the test sets is analysed
similar to the techniques described in [3]. For each
experiment, three different classifiers are generated. Testing
all three classifiers on two test sets yields six different ROC
curves. A 95% confidence interval of the true mean
detection rate is given by the t-distribution.

5.1.1 Parameter optimisation: For the HOG features,
the configurations reported in [8] are tested on the benchmark
data sets. However, our preliminary results show a poor
performance. This is because of the fact that the resolution
of benchmark data sets used (18 � 36 pixels) is much
smaller than the resolution of the original data sets
(64 � 128 pixels). In order to achieve a better result, HOG
descriptors are experimented with various spatial/orientation
binning and descriptor blocks (cell size ranging from three
to eight pixels and block size of 2 � 2 to 4 � 4 cells).

Fig. 4a shows our experimental results for various
descriptor blocks trained using linear SVM. The number of
orientation bins is set to nine and the gradient vector is set
to unsigned (unsigned gradients are when a gradient vector
and its negative vote into the same bin). The following
conclusions may be drawn from the figure:

† At data sets’ resolution of 18 � 36 pixels, 2 � 2 cell blocks
of 3 � 3 pixel cells with a descriptor stride of two to three
pixels performs best.

† Increasing the number of cells in a block beyond 3 � 3 cells
decreases the performance proportionally. The explanation for
this might be that by increasing the number of cells, we are
decreasing the feature length of HOG descriptors to be trained
by SVM and, therefore, decreases the overall performance.
Comput. Vis., 2008, Vol. 2, No. 4, pp. 236–246
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† Increasing the number of pixels in a cell (increasing cell
width) decreases the performance. The reason may be
owing to the fact that by increasing cell width, the HOG
descriptors fail to capture the informative spatial information.

† The size of the descriptor strides should be similar to the
number of pixels in a cell for optimal performance.

† The HOG feature length per training sample in this
experiment is between 2000 and 4000. It seems that there
exists a correlation between feature length and the overall
performance, i.e. the longer the feature length, the better
the performance.

Fig. 4b shows the results for different orientation binning and
gradient signs. The classifiers are trained using linear SVM.
The following observations can be made. Increasing the
number of orientation bins increases the detection rate up to
about 18 bins (signed gradients). For small resolution human
data sets, the gradient sign becomes relevant. The
performance of signed gradients significantly outperforms the
performance of unsigned gradients. This is in contrast to
large resolution human data sets as reported in [8]. From the
results shown in Fig. 4a and 4b, we have decided to use a cell
size of 3 � 3 pixels with a block size of 2 � 2 cells, descriptor
stride of two pixels and 18 orientation bins of signed
gradients (total feature length of 8064) to train SVM classifiers.

For region covariance features with nonlinear SVM, our
preliminary experiments show a region of size 7 � 7 pixels,
shifted at a step size of two pixels over the entire input
image of size 18 � 36 to be optimal for our benchmark data
sets. Increasing the region width and step size decreases the
performance slightly. The reason is that increasing the
region width and step size decreases the feature length of
covariance descriptors to be trained by SVM. However,
Figure 4 Performance on histogram of oriented gradient (HOG) features

a Performance of different descriptor blocks
b Performance of different orientation binning and gradient signs
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training a linear SVM with a region of size 7 � 7 pixels gives a
very poor performance (all positive samples are misclassified).
We suspect that the region size is too small. As a result,
calculated covariance features of positive and negative
samples cannot be separated by linear hyperplane. The
feature length of covariance descriptors per training sample
is between 1000 and 2000 features. The length is
proportional to the number of image statistics used and the
total number of regions used for calculating covariance.
Preliminary experimental results for region covariance are
shown in Fig. 5. For performance comparison, we train both
HOG and region covariance features with linear, quadratic
and Gaussian kernel SVM using SVMLight [16]. The
results show that setting parameter g in Gaussian RBF
kernel to 0.01 gives the optimal performance. Results of
different kernel functions are shown in the next section.

5.1.2 Results and analysis based on the data set:
This section provides experimental results and analysis of the
techniques described in previous section. We compare our
results with LRF features as experimented in [3]. Fig. 6a
shows detection results of HOG features trained with
different SVM classifiers. From the figure, it clearly indicates
that a combination of HOG features with quadratic SVM
performs best. Obviously non-linear SVM outperforms linear
SVM. It is also interesting to note that linear SVM trained
using HOG features performs better than non-linear SVM
trained using LRF features. This means that HOG features
are much better at describing spatial information in the
context of human detection than LRF features. Fig. 6b shows
detection results of covariance features trained with different
SVM classifiers. When trained with RBF SVM, a region of
size 7 � 7 pixels turns out to perform best compared to other
region sizes. From the figure, region covariance features
perform better than LRF features when trained with the same
SVM kernel (quadratic SVM).
The Institution of Engineering and Technology 2008
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A comparison of the best performing results for different
feature types are shown in Fig. 7a. The following observations
can be made. Out of the three features, both HOG and
covariance features perform much better than LRF. HOG is
slightly better than covariance features. From the figure, we
can see that gradient information is very helpful in human
detection problems. In all experiments, nonlinear SVM
(quadratic or Gaussian RBF SVM) improves classification
performance significantly over the linear one. However, this
comes at the cost of a much higher computation time
(approximately 50 times slower in building SVM model).

5.2 Experiments on the MIT CBCL
data set

The MIT CBCL Pedestrian data set (http://cbcl.mit.edu/
software-datasets/PedestrianData.html) consists of 924

Figure 5 Performance of different parameters on region
covariance features
Figure 6 Performance of different SVM classifiers

a On histogram of oriented gradients features
b Region covariance features
IET Comput. Vis., 2008, Vol. 2, No. 4, pp. 236–246
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Figure 7 A performance comparison of the best classifiers for different feature types

a On the data set of [3]
b On MIT CBCL data set
non-mirrored pedestrian samples. Each sample has a
resolution of 64 � 128 pixels. The database contains a
combination of frontal and rear view human. We applied
the same techniques as described in [3] by dividing the
pedestrian samples into five sets (Table 2). Each set consists
of 184 pedestrian samples. Each sample is mirrored and
shifted randomly by a few pixels in horizontal and vertical
directions before being cropped and resized to a resolution
of 18 � 36. Each sample contains approximately two to
three pixels of margin around the person on all four sides.

For MIT CBCL Pedestrian database, the parameters used
are the same as the ones used previously in the data set of [3].

5.2.1 Results and analysis based on MIT CBCL
data set: Fig. 7b shows a comparison of experimental
results on different feature types using the MIT CBCL
pedestrian data set. Both HOG and covariance features
perform extremely well on the MIT CBCL data set. This
is not too surprising knowing that the MIT CBCL data
set contains only a frontal view and rear view of human.
Less variation in human poses makes the classification
problem much easier for SVM classifiers. As a result, there
is a noticeable improvement in the experimental results
compared with Fig. 7a.

Table 2 MIT CBCL pedestrian data set

No. Data
splits

Pedestrians/
split

Non-pedestrians/
split

Train 3 1840 5000

Test 2 1840 5000

The non-pedestrian examples are randomly sampled
from [3]
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It is also interesting to note that the performance of
covariance features (with Gaussian RBF SVM) is very
similar to HOG features trained using Gaussian RBF and
quadratic SVM. It even outperforms HOG features at a
low false-positive rate. Also nonlinear SVMs are always
better than the linear SVMs.

5.3 Experiments on INRIA pedestrian
data set

The data set consists of one training set and one test set. The
training set contains 1208 pedestrian samples (2416 mirrored
samples) and 1200 non-pedestrian images. The pedestrian
samples were obtained from manually labelling images taken
from a digital camera at various time of the day and at various
locations. The pedestrian samples are mostly in standing
position. A border of 16 pixels is added to the sample in
order to preserve contour information. Experimental results in
[8] show that this border provides a significant amount of
context that helps improve the detection performance. All
samples are scaled to size 64 � 128 pixels.

Unlike the previous experiment where pedestrian samples
and non-pedestrian samples are provided, we employ a
technique called bootstrapping to incrementally construct a
new non-pedestrian training set. We begin by randomly
selecting a set of 10 000 non-pedestrian patches from the
1200 non-pedestrian images as an initial non-pedestrian
training set. A preliminary classifier is trained and used to
classify patches of non-pedestrian samples from the 1200
non-pedestrian images. False-positives are collected and
added to the initial negative training set. A new classifier is
then trained on the new negative training set. The process
can be repeated until there is no significant improvement in
the performance of the classifiers.
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The test set contains 1176 pedestrian samples (mirrored)
extracted from 288 images and 453 non-pedestrian images.
We evaluate the performance of our classifiers on the given
test set using classification approach. Pedestrian samples are
cropped from the pedestrian test images while non-
pedestrian samples are obtained uniformly from a set of
negative images. For quantitative analysis, we plot miss rate
against false-positive rate on log–log scale.

5.3.1 Parameter optimisation: For the HOG features,
we use the best configurations reported in [8]. In brief, we used
2 � 2 cell blocks of 8 � 8 pixel cells for spatial binning.
For orientation binning, we used nine orientation bins
spaced over 08–1808, that is the sign of the gradients is
ignored. For more details, we refer the reader to [8].

Fig. 8 plots the miss rate at 1024 false-positives per
window for different region size and step size of covariance
features trained using linear SVM. From the figure,
decreasing the step size often improves the performance of
the classifiers. The reason is that by decreasing the step
size, we increase the overlapping covariance regions.
In other words, we increase the length of final covariance
descriptor vector to be trained by SVM and, as a result,
this improves the performance of the classifiers. The
smallest step size experimented in this paper is four pixels.
Note that decreasing the step size beyond this is possible
but it reduces the number of hard non-pedestrian samples
that can be fitted into memory during re-training
(bootstrapping). Small number of hard negative samples
results in little improvement in the performance gain in the
next round of re-training. As a result, we have decided to
use a region of size 16 � 16 pixels, shifted at a step size of
six pixels over the entire human samples of size 64 � 128
pixels. Note that we use a step size of six pixels instead of
four pixels for faster computation time.
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In our experiments, 10 000 new non-pedestrian patches
are added to the training sets in each iteration of
bootstrapping. We applied bootstrapping technique twice.
Additional iteration of bootstrapping makes very little
difference to the performance of the classifier. Note that we
used new non-pedestrian patches generated by the linear
SVM classifier to train the non-linear SVM classifier. This
is because non-linear SVM classifier generates too few
false-positives in each iteration of bootstrappings.

5.3.2 Results and analysis based on INRIA data
set: In Fig. 9, we plot the detection performance curve on a
log-log scale. The y-axis corresponds to the miss rate and the
x-axis corresponds to false-positives per window. Lower
values are better. Fig. 9 shows the detection results of HOG

Figure 8 The miss rate at 1024 false-positives per window
for different region size and step size of covariance features
Figure 9 Performance of different SVM classifiers

a On histogram of oriented gradients features
b On region covariance features
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and covariance features trained with different SVM classifiers.
Similar to the previous experimental results, nonlinear SVM
outperforms linear SVM in both HOG and covariance features.

In Fig. 10, we compare the results of HOG features with
region covariance features. From the figure, both features
perform similarly in the context of human detection.
However, HOG features slightly outperform covariance
features. Tuzel et al. [9] conclude that the covariance
descriptor outperforms the HOG descriptor
(using variable-size covariance blocks with logitBoost
classification). Instead of minimising exponential loss as in
AdaBoost, LogitBoost minimises the logistic loss function.
We suspect the difference would be in the covariance block
size and the classifier used in their experiments. Fig. 11
shows some of the detection results on INRIA test images
using HOG features and covariance features. Note that no
post-processing has been applied to the detection results.

5.4 Discussion

Although, covariance features trained using RBF kernel SVM
outperform the combination of LRF features with quadratic
kernel SVM, the covariance detector has a number of
disadvantages. First, the block size used in covariance detector
is fixed (i.e. in our experiment, the block size of 7 � 7 pixels
performs best on pedestrian data sets of [3] whereas the block
of 16 � 16 pixels performs best on INRIA data sets [8]).
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Having a square fixed size block means we are unable to
capture some of the human body parts which have a
rectangular shape, for example, human limbs, human torso, etc.
It is possible to combine covariance descriptors at multiple
block sizes to improve the overall performance. However,
combining features from multiple block sizes greatly increases
the covariance descriptor size. As a result, computation cost
during training and classification also significantly increases.

Figure 10 A performance comparison of the best classifiers
for different feature types on the INRIA data set [8]
Figure 11 Detection results on INRIA test images

The top row shows the detection results of linear SVM using covariance features
The bottom row shows the detection results of linear SVM using HOG features
Note that no postprocessing has been applied to the detection results (scale factor of 0.8 and window step-size of four pixels)
Again we see that covariance and HOG features perform very similarly
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The second disadvantage is the use of nonlinear SVM as a
classifier. Training nonlinear SVM with covariance features has
several drawbacks. The first drawback comes from the high-
dimensionality of covariance features. Owing to the limited
amount of system memory, we are unable to fit all training
samples in memory during SVM training. In other words, the
large size of the feature vectors limits the number of
bootstrapped non-pedestrian samples that can be used. As a
result, the detection performance often degrades if the system is
trained on a computer with small amount of memory. The
second drawback of nonlinear SVM is the parameter tuning
process. SVM has a number of parameters that need to be
manually optimised for the specific classification task using
cross-validation technique. Finding the optimised value for
each parameter combination is rather tedious and time-
consuming. The third drawback is the high computation time
of nonlinear SVM. Although, nonlinear SVM performs
significantly better than the linear SVM, it comes at the cost of
a much higher computation time during training and evaluation.

As an ongoing work, we are conducting experiments on a
new covariance detector that will avoid the above problems by
employing AdaBoost feature selection [15] and a cascade of
classifiers [1].

6 Conclusion
This paper presented an in-depth experimental study on
pedestrian detection using three of the state-of-the-art local
features extraction techniques. Our experimental results
show that region covariance (correlation coefficient between
image statistics) and normalised HOG features in dense
overlapping grids significantly outperform the adaptive
approach like LRF features. In [3] the authors show that
LRF is the best among the features they have compared.
Also we show that the covariance features’ performance is
very similar to HOG’s, on all the data sets we have used.
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